379 research outputs found

    Dynamical electron transport through a nanoelectromechanical wire in a magnetic field

    Full text link
    We investigate dynamical transport properties of interacting electrons moving in a vibrating nanoelectromechanical wire in a magnetic field. We have built an exactly solvable model in which electric current and mechanical oscillation are treated fully quantum mechanically on an equal footing. Quantum mechanically fluctuating Aharonov-Bohm phases obtained by the electrons cause nontrivial contribution to mechanical vibration and electrical conduction of the wire. We demonstrate our theory by calculating the admittance of the wire which are influenced by the multiple interplay between the mechanical and the electrical energy scales, magnetic field strength, and the electron-electron interaction

    Ground state properties of ferromagnetic metal/conjugated polymer interfaces

    Full text link
    We theoretically investigate the ground state properties of ferromagnetic metal/conjugated polymer interfaces. The work is partially motivated by recent experiments in which injection of spin polarized electrons from ferromagnetic contacts into thin films of conjugated polymers was reported. We use a one-dimensional nondegenerate Su-Schrieffer-Heeger (SSH) Hamiltonian to describe the conjugated polymer and one-dimensional tight-binding models to describe the ferromagnetic metal. We consider both a model for a conventional ferromagnetic metal, in which there are no explicit structural degrees of freedom, and a model for a half-metallic ferromagnetic colossal magnetoresistance (CMR) oxide which has explicit structural degrees of freedom. The Fermi energy of the magnetic metallic contact is adjusted to control the degree of electron transfer into the polymer. We investigate electron charge and spin transfer from the ferromagnetic metal to the organic polymer, and structural relaxation near the interface. Bipolarons are the lowest energy charge state in the bulk polymer for the nondegenerate SSH model Hamiltonian. As a result electrons (or holes) transferred into the bulk of the polymer form spinless bipolarons. However, there can be spin density in the polymer localized near the interface.Comment: 7 figure

    Doping dependence of the exchange energies in bilayer manganites: Role of orbital degrees of freedom

    Full text link
    Recently, an intriguing doping dependence of the exchange energies in the bilayer manganites La22xSr1+2xMn2O7La_{2-2x}Sr_{1+2x}Mn_2O_7 has been observed in the neutron scattering experiments. The intra-layer exchange only weakly changed with doping while the inter-layer one drastically decreased. Here we propose a theory which accounts for these experimental findings. We argue, that the observed striking doping dependence of the exchange energies can be attributed to the evaluation of the orbital level splitting with doping. The latter is handled by the interplay between Jahn-Teller effect (supporting an axial orbital) and the orbital anisotropy of the electronic band in the bilayer structure (promoting an in-plane orbital), which is monitored by the Coulomb repulsion. The presented theory, while being a mean-field type, describes well the experimental data and also gives the estimates of the several interesting energy scales involved in the problem.Comment: Added references, corrected typos. To appear in Phys. Rev.

    Optical Investigations of Charge Gap in Orbital Ordered La1/2Sr3/2MnO4

    Full text link
    Temperature and polarization dependent electronic structure of La1/2Sr3/2MnO4 were investigated by optical conductivity analyses. With decreasing temperature, for E//ab, a broad mid-infrared (MIR) peak of La1/2Sr3/2MnO4 becomes narrower and moves to the higher frequency, while that of Nd1/2Sr3/2MnO4 nearly temperature independent. We showed that the MIR peak in La1/2Sr3/2MnO4 originates from orbital ordering associated with CE-type magnetic ordering and that the Jahn-Teller distortion has a significant influence on the width and the position of the MIR peak.Comment: 10 pages, 4 figure

    Essential Role of the Cooperative Lattice Distortion in the Charge, Orbital and Spin Ordering in doped Manganites

    Full text link
    The role of lattice distortion in the charge, orbital and spin ordering in half doped manganites has been investigated. For fixed magnetic ordering, we show that the cooperative lattice distortion stabilize the experimentally observed ordering even when the strong on-site electronic correlation is taken into account. Furthermore, without invoking the magnetic interactions, the cooperative lattice distortion alone may lead to the correct charge and orbital ordering including the charge stacking effect, and the magnetic ordering can be the consequence of such a charge and orbital ordering. We propose that the cooperative nature of the lattice distortion is essential to understand the complicated charge, orbital and spin ordering observed in doped manganites.Comment: 5 pages,4 figure

    Polaronic Signatures in Mid-Infrared Spectra: Prediction for LaMnO3 and CaMnO3

    Full text link
    Hole-doped LaMnO3 and electron-doped CaMnO3 form self-trapped electronic states. The spectra of these states have been calculated using a two orbital (Mn eg Jahn-Teller) model, from which the non-adiabatic optical conductivity spectra are obtained. In both cases the optical spectrum contains weight in the gap region, whose observation will indicate the self-trapped nature of the carrier states. The predicted spectra are proportional to the concentration of the doped carriers in the dilute regime, with coefficients calculated with no further model parameters.Comment: 6 pages with 3 figures imbedde

    Anisotropic Optic Conductivities due to Spin and Orbital Orderings in LaVO3 and YVO3: First-Principles Studies

    Full text link
    The anisotropy of low energy (0\sim5eV) optical excitations in strongly correlated transition-metal oxides is closely related to the spin and orbital orderings. The recent successes of LDA+UU method in describing the magnetic and electronic structures enable us to calculate the optical conductivity from first-principles. The LaVO3_3 and YVO3_3, both of which have 3d23d^2 configuration and have various spin and orbital ordered phases at low temperature, show distinct anisotropy in the optical spectra. The effects of spin and orbital ordering on the anisotropy are studied in detail based on our first-principles calculations. The experimental spectra of both compounds at low temperature phases can be qualitatively explained with our calculations, while the studies for the intermediate temperature phase of YVO3_3 suggest the substantial persistence of the low temperature phase at elevated temperature.Comment: 6 pages, 3 figures, accepted by PR

    Temperature Dependence of Low-Lying Electronic Excitations of LaMnO_3

    Full text link
    We report on the optical properties of undoped single crystal LaMnO_3, the parent compound of the colossal magneto-resistive manganites. Near-Normal incidence reflectance measurements are reported in the frequency range of 20-50,000 cm-1 and in the temperature range 10-300 K. The optical conductivity, s_1(w), is derived by performing a Kramers-Kronig analysis of the reflectance data. The far-infrared spectrum of s_1(w) displays the infrared active optical phonons. We observe a shift of several of the phonon to high frequencies as the temperature is lowered through the Neel temperature of the sample (T_N = 137 K). The high-frequency s_1(w) is characterized by the onset of absorption near 1.5 eV. This energy has been identified as the threshold for optical transitions across the Jahn-Teller split e_g levels. The spectral weight of this feature increases in the low-temperature state. This implies a transfer of spectral weight from the UV to the visible associated with the paramagnetic to antiferromagnetic state. We discuss the results in terms of the double exchange processes that affect the optical processes in this magnetic material.Comment: 7 pages, 5 figure

    Manipulating the Tomonaga-Luttinger exponent by electric field modulation

    Full text link
    We establish a theoretical framework for artificial control of the power-law singularities in Tomonaga-Luttinger liquid states. The exponent governing the power-law behaviors is found to increase significantly with an increase in the amplitude of the periodic electric field modulation applied externally to the system. This field-induced shift in the exponent indicates the tunability of the transport properties of quasi-one-dimensional electron systems.Comment: 7 pages, 3 figure

    Manganites at Quarter Filling: Role of Jahn-Teller Interactions

    Full text link
    We have analyzed different correlation functions in a realistic spin-orbital model for half-doped manganites. Using a finite-temperature diagonalization technique the CE phase was found in the charge-ordered phase in the case of small antiferromagnetic interactions between t2gt_{2g} electrons. It is shown that a key ingredient responsible for stabilization of the CE-type spin and orbital-ordered state is the cooperative Jahn-Teller (JT) interaction between next-nearest Mn+3^{+3} neighbors mediated by the breathing mode distortion of Mn+4^{+4} octahedra and displacements of Mn+4^{+4} ions. The topological phase factor in the Mn-Mn hopping leading to gap formation in one-dimensional models for the CE phase as well as the nearest neighbor JT coupling are not able to produce the zigzag chains typical for the CE phase in our model.Comment: 16 pages with 16 figures, contains a more detailed parameter estimate based on the structural data by Radaelli et al. (accepted for publication in Phys. Rev. B
    corecore